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ABSTRACT

The semi-.Markov shock model represents a system where shocks

occur at random points in time causing random magnitudea of damage

in such a way that the cumulative damage to the system over time

is a semi—Markov process. System failure can occur at any of the

shpck times and the probability of a failure is a function of the

cumulative damage. An optimal ~ontrol limit type policy has

Previously been derived assuming that costs are incurred at the

replacement time. This note is to show that the inclusion of state

dependent maintenance costs does not significantly affect the form

i1’~ ‘~r~of the optimal control limit IbiCAflC~~~~~
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1. INTRODUCTION AND NOTATION

The optimal control limit for a semi—Markov shock model has

been derived in Feldman (1976). In that paper, a very simple cost

function was used . The purpose of this note is to extend the results

of that paper to include a general cost structure.

Although a complete description of the process is given in the

previous paper, it will be repeated here for ease of presentation.

Let the Markov renewal process (X,T) = {X~~T~; n—O ,l, . . . } be a
non—terminating process with state space E where T0, T1, T2, .

denotes the initial, first, second, . . . shock times and X0, X1,
X2, . . . denotes the cumulative damage at the respective shock times.
(The initial shock time is always zero, i.e., T0

0.) The state

space E is taken to be a subset of the non—negative reals or the non-

negative integers. Let h(x) denote the probability that the system

fails at time T given X~ — x and given that the system was working

at time T .  The function h is assumed to be non—decreasing, and

it is assumed that there exists y ~ 0 and some n 0,1, . . . such
that h(y)> 0 and P{X 

~~. Y I Xo — x} < 1 for all x 
~ 
y. (This last

assumption is used to insure a finite expected failure time.)

Define the random variable L to be the n such that T is the
n

failure time of the system; thus,

P{L > n Ixo,xi, . . ~~~~ — (1—h(x 1)) . . • (l—h(x )). (1)

The time to failure ia defined by

r(w) — TL(W)(u~
). 

(2)

~~~~~~~~~~~~~~~~~~~~~~~~ 
a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ .~~ : : . ____
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Let the “death state” A be a distinct point not in E and

define the Markov renewal process (X,T) by

[X (t4) if n< Lb),

— (3)

[A  
i f n ~~~L(i,~ ;

and 

T ( ~~ if n~~ L(w) ,

T (w) — (4)

4= ifn>L(w).

The semi—Markov kernel of (X,T) is denoted by Q and is defined for

x,y ( E, t � O , by

Q(x ,y,t) — P(X1~.y, T~~.t X~~x} (5)

Pj X~~.y~ , T~~.t}

— P
~
{X1...y~ 

T1~
t, L>1)

— I Q(x,du,t) (l—h(u)),
.1 u E ~) ,y]

where Q is the semi—I4arkov kernel of (X ,T) and should be a given

quantity. The Markov renewal kernel associated with Q is R and is

defined, for x , y ~ E, t ~ 0, by

R(x ,y, t) ~ Q’1(x ,y, t) (6)
n 0
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where

Q’~~~(x ,y, t) — I JuE.E s~,~0,t]

The imbedded Markov chain X will have transition matrix P and, by

an abuse of notation, its potential will be R; thus

P(x,y) ~~~ Q(x,y,t) (7)

and

R(x,y) - lim R(x,y,t) ~ P”(x,y) . (8)
n 0

For a fixed control limit a, let denote the replacement

time and let A denote the index of the shock time at which replace-

ment occurs; that is,

A (w) — L(~ ) A inf (n: X ~ a} (9)

and

T (w) - TA G
~
). (10)

Equations (3) and (4) define the shock model and equations (9)

and (10) define the replacement policies. In the next section the

cost structure is given and in Section 3 it is shown that previous

results apply to this more general situation.

t
• - — ~~~~ ~, - • ‘ 
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2. THE COST STRUCTURE

The costs used in Feldman (1976) were a fixed replacement cost

and an additional incremental cost incurred upon failure. In

Feldman (1977), a general replacement cost function was used but again

no maintenance cost was considered. Optimality was based on long

run average cost assuming instantaneous replacement with an identical

system. In this note, both a maintenance and a replacement cost

function are used. Furthermore, it is assumed that the time for

replacement is a random variable denoted by a.

Consider the renewal process formed by repeated replacements

of identical systems, each system having a lifetime given by the

distribution of and a replacement time given by the distribution

of a. Let the cost of the first, second, . . . replaced system be
C1, C2, . . . , where {C1, C2, . . .} is a sequence of independent

identically distributed random variables. If N
t 
is the number of

renewals in [0,t] and iji is the long—term cost per unit time, then

EEC I
4’ — u r n  l[C + . . . + C ] — 

1 
- (11)a 1 Nt E [t +~]

Let the cost of replacement be given by the function f , where

f(x) is the replacement cost if the cumulative damage is x at replace-

ment t ime. Let the maintenance cost be determined by the rate function

c(x), where c(x) is the cost per unit time incurred while the system

remains in state x. Thus the expected cost per system is defined

by

A — l

EE C 1J — E( f (X A ) + ~~ c(X ) (T~~ 1 
— T fl . (12)

a n 0

~~~~~~~~~~~~~~~~~ 

~~~~~~~~ • ~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~ 
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* *The objective is to find a such that a minimizes 4’ where 4’ ix

defined by equations (11) and (12).
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3. OPTIMAL REPLACEMENT

The main trick is to substitute the maintenance and replace-

ment cost functions by a single equivalent replacement cost function.

This is not a new trick and was done by Dynkin (1963) for Markov

processes and has been used of ten for both Markov chains and Markov

processes. The following lemma incorporates these ideas for Markov

renewal processes.

(3.1) LEMMA: Let (X,T) be the Markov renewal process def ined

by equations (3) and (4) and let A
a be defined by equation (10).

Then

E [  
a 

C(X
n

)(T
n+i

_T
n)3 

- J R(x,dy)c(y)m(y)
n 0  y € E

— E E J  
E Aa

where rn(x) is the mean sojourn time in state x; or

rn(x) — (l—Q(x ,E,t)] dt
J t~O

Proof: Let$ be an arbitrary non—negative function and let

R$(x) — ( R(x,dy)~ (y). Then for the Markov chain X,

~y EE

A—l
R $ (x) E

~
[ 
~ 

$ (x
e
)] + E 1R $(XA

)]  (13)
n0

(see çinlar (1975, page 201)). For ease of notation, let Wn~Tn+i
_T
n

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ]
_________________________

~~
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and define $ (x) = c(x)m(x) . Now note that

R$(x) — E[ ~ c(X )m(x) ]
n 0

= ~ E [c(X )E [W~~X ]J
n 0

= ~ E(E [c(X )W jX ]]
n 0

= ~ E [c(X )~W ]
n 0  X fl fl

E L  ~ c(X)W]
n=O

Using an identical argument on the other two terms in equation (13),

the result of the lemma is obtained.

(3.2) LEMMA: For a fixed control limit a, the long—term cost

per unit time is given by

f (x) + J R(x,dy)[l~~(y)-~(y)J

4, y €[O,cz]

E[a] + J R(x ,dy)rn(y)
y€ (O ,a]

where

f(x) — J R(x ,dy)c(y)m(y)
y~~E

and

P~(x) — J P(x,dy)’I~(y) + f(A)[l—P(x,E)J
y~~E

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
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Proof: The denominator of equation (11) comes from Feldman (1976 ,

Proposition 2.10). The numerator given by equation (12) uses the

relation

E
x

[ f ( X
A ) I  = f (x) + J R(x ,dy)[Pf(y)—f(y)], (17)

y< a

Lemma (3.1), and the substitution given by (15). The proof of

equation (17) appears In Feldman (1977) but since that proof contains

some errors , (17) will be derived below. Using a renewal theoretic

type argument and the fact that P(x,y) 0 for x~y (namely the sys tem

is not self repairing), it follows that

E [f(X
A
)] = t(i~)[l—P(x,E ) ]  + J P(x ,dy) f (y)

y~cz

+ f P(x ,dy)E [f(XA)I

= I R(x *dv){J 
P(y,du) f ( u)

u~~a

+ f(A)[l—P(y,E)j}.

Add and subtract ( P(y, du) f (u) , rearrange terms, and obtain

~u<a

E [f(X
A

) ]  = J R(x ,dy )P f (y )
y<a

— J f(u)
J 

R(x,dy)P( y ,du).
u<a y<a

The proof is now completed by noting that

RP(x ,u) = R(x ,u) — l
LO u](X)•

~~~:: ~;: ~~~~~~~~~~~ ~~~~~~~~~~~~~
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(3.3) ThEOREM: Let (X,T) be the Markov renewal process defined

by equations (3) and (4) with = x and let R(x,y) be an absolutely

continuous function with respect to y for each x ~E. Then the optimal

control limit policy is the a that satisfies the following equation:

J R(x ,dy){m (y) [P~~~i)-~(a) 1-m(a) [P~ (y)-~(y) I
y ‘~ [O ,a]

= m ( c z ) f (x ) — E [ a ] [ P~ (a )— f( a ) ]

Proof: Follows from Lemma (3.2) by taking a derivative with respect

to a.

(3.4) THEOREM : Let (X,T) be the Markov renewal process defined

by equation (3) and (4) with the state space the set of non-negative

integers, let X0 i, and let r(i,j) = R(i , j )— R ( i ,j—l). Then the

optimal control limit policy Is the smallest a such that

a—i

~ r(i,k) ( m (k) (P~’(c&)—~’(a) ]—m(ct) [P~’(k)—~’(k) I )
k=O

�

Proof: Follows from Lemma (3.2) by taking differences with respect

to a.

In the use of Theorem (3.4), it should be pointed out that the

terms r(i,j) are easy to compute since Q Is upper triangular (see

Feldman (1976 , Section 4)). It should also be noted that equality

is included In equation (9) so replacement occurs when the cumula-

tive damage Is greater than or equal to the control limit. Finally ,

in order to avoid a common computation error, it might be helpful to

emphasize that the state space E does not contain the state A .

S .- • ..‘, ,--•  ;_ - — - -
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